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Chapter 10

System of Linear Differential
Equations

10.1 Theory of Linear System

We start from an example.

Example 10.1.1. Let x = <§> and consider the system of DE

dx
dr _ 9
dt z + 3y or x — <_24 g) x.

Example 10.1.2. Verification of solutions: The vector functions

1\ _ e~ 2 3 3eb?
w= ()= (G mae=(5) e = (5n)

are solutions of the DE.
1 3

X' = <5 3> X. (10.1)

More generally, we consider the first order system of linear differential equa-
tion in n-unknowns given by

= an®)z1+ - ap(t)z, + f1(¢)
zh = an(t)ry + - agn(t)zn + f2(t) (10.2)

185



186 CHAPTER 10. SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

In matrix form (10.2) becomes

x = A(t)x +f, (10.3)
where
arr(t) aw2(t) - a(t)
T 24 (t) fi(®)
ag1(t) ag(t) -+ agp(t
N I VI e T .() (t) '() e
, : :
Tn :En(t) a1 (t) an2(t) o ann(t) fn(t)
Theorem 10.1.3. [Existence and uniqueness] Assume a11(t),a12(t), - ,a1n(t),
< ann(t), f1(t),- -+, fu(t) are continuous on the interval a < t < b. Then for
a <ty <bthe DE (10.2), or (10.8) has a unique solution satisfying ICs; x1(tg) =
2y, za(te) = ab.

Consider the homogeneous case.

x' = A(t)x. (10.4)
Example 10.1.4. Consider the DE.
1 0 1
x = 1 1 0 |x
-2 0 -1
The solutions are
cost 0
x1(t) = | —3(cost —sint) | and xo(t) = | €’
—cost —sint 0
Hence
cost 0
X = 1X] + X2 = (1 —%(cost —sint) | +co | €
—cost —sint 0

is another solution of the homogeneous system. Acually, there is a third solution.

Linear dependence/independence

Definition 10.1.5. [Linear independence] If x(1) - .. x(™ are solutions of (10.4)
in a <t < b, then we say the set of solution vectors are linearly dependent
dependent if there exist constants c{,--- , ¢y, not all zero, such that

holds for all ¢ € (a,b). Otherwise, they are called linearly independent.
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Given a set of solution vectors

Tnl Tn2 Tnn

xll(t) s len(t)
WM, xMy = S (10.5)
Tn1(t) -0 Ton(t)
Theorem 10.1.6. [Criterion for linear independence] If xW o x(™) gre so-

lutions of (10.4) then the set of solution vectors are linearly independent if and
only if
w(xM, ... xM) £ 0. (10.6)

for every t in the interval.

Remark 10.1.7. To show the Wronskian is nonzero at all point, it suffices to
show the Wronskian is nonzero at any one point.

Theorem 10.1.8. [Superposition principle] If xW x@ ... xM) gre the solu-
tions of (10.4) then for any constants c1,ca,- - , ¢, the linear combination crx
+ x® - e, x(™ s also a solution of (10.4).

Now study the general solution of (10.4).
Theorem 10.1.9. [General solutions of system of homogenous DEs] Ifx® ... x(™)
are linear independent solutions of DE (10.4) in a < t < b, then any solution
o(t) is given by a linear combination of x(M), ... x():

o(t) = x4 4 e, x™ (10.7)

. Let ¢ be any solution of (10.4). Fix a point to(a < ty < b), set @(tg) =
k = (k1,--- ,kyn). Then for the general solution x4 ¢, x(™ to satisfy the
ICs x(tp) =k, i.e.,

Clx(l) (tO) 4+ o4 cnx(n) (to) = k7 (108)

we must have
cizii(to) + -+ cpzin(to) = ki,

Clxnl(tO) +---+ Cnxnn(tO) = kn
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This is a system of linear equations in c¢y,--- ,¢,. By hypothesis, the functions
are linearly independent, i.e.,

W (xW(to), -+ ,x"(to)) # 0. (10.9)
Hence the solution ¢y, - - , ¢, exists uniquely. Thus the solution of the IVP is
X(t) = clx(l) 4+ o4 CnX(n). O
Definition 10.1.10. Any set xW o x(™) of p linearly independent solution

vectors is said to be fundamental set of solutions of (10.4).
For simplicity we consider the case ty = 0 only.

Theorem 10.1.11. Let x, (i = 1,2,--- ,n) be the solution of IVPs

x'(t) = A(t)x
() — -0 (10.10)
Then X(l), e ,x(") are the fundamental set of solutions. For any IC. x(0) =k =
(ky,--- ,kn)T, the solution satisfying the IC. is given by
x(t) = kixM (t) + - + ko x"(2). (10.11)

. Since W[xM(0),--- ,xM(0)] = det] =1 # 0 we see xI ... x(" are
fundamental set of solutions. Clearly (10.11) satisfy IC. O

Let
X(t) = &), ,x"(1)).

Then any solution satisfying the initial condition (10.8) is given by x(t) = X (¢)k.

Nonhomogeneous System
If x,, is a particular solution of nonhomogeneous system
x' = A(t)x + £(t), (10.12)
then the general solution of (10.12) is given by
X = X¢ + Xp,

where x, = ¢;xM) + -4 ¢,x(™ is the general solution of associated homogeneous
System.
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10.2 Homogeneous Linear System with constant co-
efficients

Here we will study how to find fundamental set of solutions.
First consider the DE.
X = <1 3> x
5 3)°7
The solutions are

1
X = C1X] + X9 = (1 (_1> e 2+ Co <§> bt

Both solutions are has the form

We will see the solution is generally given in this form when the matrix A has
constant coefficients.

Eigenvalues and Eigenvectors

Given n x n matrix A consider the DE
x' = Ax. (10.13)

s

and substitute into (10.13) we obtain
rke™ = Ake'™.

=)

det(A —rI) = 0. (10.15)
This is called the characteristic equation. Solving the eigenvalue problem we
obtain the solution of x = ke'?.
Depending on the roots(eigenvalues) of the characteristic equation, the solu-
tion methods are classified into the following cases:

For a vector k € R™ we assume

Dividing by e we obtain

From this we get

(1) Real and distinct eigenvalues
(2) Repeated eigenvalues (real)

(3) Complex eigenvalues
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10.2.1 Real and distinct

When the eigenvalues of A are real and distinct, then general solution is given by
x(t) = o kWe? 4 ok @er2t 4. 4 egk(Memt,
Example 10.2.1. Find the general solution of
X = (1 —2> x
3 —4

Sol. The characteristic equation is

(1 5 —4_E 7“) <Z;> =0 (10.16)

1—7r —2

’A—TI’:‘ 5 4

. ':7*2—1—37"—1-2:0.
Sory =—1,ry = —2.

(1) Casery = —1:

(R0

So k1 — k9 = 0 and we can choose

k() = G) . (10.18)

(2) Caser =—2:

(=) () - () 10.19)

So 3k1 — 2ky = 0 and we can choose
k() = @) : (10.20)

Finally we have
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Example 10.2.2. Find the general solution of
11 2

xX=112 1]|x
2 11

The characteristic equation is

1—r 1 2 k1
A-rDk=| 1 2-r 1 ks | = 0. (10.21)
2 1 1—r k3
1—r 1 2
|[A—rl|= 1 2—-r 1
2 1 1—r
= 44’4 r—4=—(r—-4)Fr-1)Fr+1)=0.
Sor; =4, =1,r3 = —1.
(1) r=4:

1 -2 1| |k =0. (10.22)

—3k1  +ky +2k3 =0
k1 —2ko +k3 =0
2kq +ky —3ks =0.

Choose k3 = 1 so that

—3k1  +ke = -2
k1 —2ky =-1
2k1 4k =3

from which we obtain k1 = 1,ky =1, i.e.,

1

xM = [1]e*.
1
(2) r=1
0 1 ky
1 11 ka | =0 (10.23)
2 10 ks
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ko +2kg =0
k1 +ko +ks =0
2k1  +ko = 0.
Choose k1 = 1 so that
ko +2k3 =0
ko +ks =-—1
ko = -2
from which ky = —2, k3 = 1, i.e.,
1
x? = | —2] ¢
1
3) r=-1
2 1 2 k1
1 31 ko | =0. (10.24)
2 1 2 ks

2ky  4ko +2k3 =0
ki +3ko +k3 =0
2ky 4k +2k3 =0.

Choose k3 = 1 then

2k +ky =-2
ki +3ky = -1
2k +ky =-2
from which k1 = —1,ke =0, i.e.,
—1
xB) = 0 |et
1
Hence the general solution is
1 1 -1
x=c |1 e4t—i—cz —2)et+es| 0 et
1 1 1

Remark 10.2.3. In this example A is symmetric, in which case it is known
that there always exist n linearly independent vectors. So finding the solution is
simple.
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Phase portrait or Phase plane

Example 10.2.4.
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Sol. The characteristic equation is

|[A—rl|=

2—r 3
2 1-—

. ‘:(r+1)(r—4):0, ri=—1,ry =4.

For r = —1 the eigenvector is k; = (1,—1)T. For r = 4 the eigenvector is
ko = (3,2)7. So the solution of DE. is

X=C (_11> et C2 <3> et

If we eliminate parameter ¢ and get relation between x and y, (use various con-
stants) then we get certain relations. For example, if ¢; = 1,¢5 = 0, we get x(t) =
e~ ty(t) = —e7t hence y = —x. If ¢ = 0,c2 = 1, we get z(t) = 3e*, y(t) = 2e*
and hence y = %az These solutions corresponds to the two blue lines.

Exercise 10.2.5. (1) Find the solution of the following DE.
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(a)

1 1 2 1
xX=112 1]x, x(0)=|2
211 3
(e)
0 0 1 2
xX=12 0 0|x, x(0)=13
-1 2 4 4

10.2.2 Repeated eigenvalues of multiplicity m
Assume 7 is a repeated eigenvalue of multiplicity m. There are two cases:

e There exists m linearly independent eigenvectors k™M, ... k(™ correspond-
ing to the eigenvalue r. In this case, the m-linearly independent solutions
are given by

clk(l)erlt _|_ “ o + cmk(m)ermt

e There exists only one linearly independent eigenvector k(! corresponding
to the eigenvalue r. In this case, the m-linearly independent solutions are
given by (Solve the system in this order)

X1 = k(l)erlt
xo = kWt 4 k@ent
2
x; = kOLenty k@ent 4 @ ent
9!
_ ('1> @ T (m) 1t
_ r1 r1 m) 71
X, = k (m—l)!e +k (m—2)!e + -+ ke,

Vectors k), k) through k(™) are obtained by substituting these expres-
sions into the D.E.
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Example 10.2.6. Find the general solution of

1 -2 2
X=[-2 1 —2|x (10.25)

9 1lor 2| = (12— 5) =0, (10.26)
2 -2 1-r
For r = —1
2 -2 2
92 92 —921k®=o.
2 -2 2
Thus we have k1 — ko + k3 = 0. The two independent solution vectors are
k(M = (1,1,0)" and k@ = (0,1, 1)". For r =5,
—4 -2 2
—2 —4 —2|k® =o.
2 -2 —4

So k® = (1,—1,1)T. In this case, there are three independent vectors. Hence
the general solution is of the form

x(t) = eikMe™ + k@ e 4 3kt

Less than m - Linearly independent eigenvectors - Second solution

When r is a multiple eigenvalue of multiplicity 2 and if there is only one eigen-
vector corresponding to it then the first solution is given by as before,

xM) = ke, (10.27)
where k satisfies
(A—rDk = 0. (10.28)
The second solution is
x® = kte™ + pe™, (10.29)
where the vector p can be found by
(A-rI)p = k. (10.30)

The final solution is
x = cike™ + co(kte™ + pe™™).
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Example 10.2.7. Find the general solution of

x = (i’ _51> X. (10.31)

Sol. The characteristic equation is

<3IT 5_—1r> </2> - (8) - (10.32)

o 3—r -1 . . 2
’A—TI’—‘ 1 5, =(r—4)°=0.

So r =11 = ry = 4 and the equation to for the eigenvectors is:

—k1 —ke =0
ki +koy =0.
Solving it, we get k1 = 1, k9 = —1. Hence we have only one linearly indepen-

dent vector:

1
()
from which we get one solution:

X(l) = (_11> €4t.

We need to find another linearly independent solution. Recall scalar case, we
tried: x(t) = c1e™ + cote™. So we may try a solution like kte*!, but this is not
enough! We have to add a term corresponding to the derivative of kte*. Thus
try

[ x(@ = kte* + pe4t]. (10.33)

Substitute this into the DE., we get

(A—4D)p =k (10.34)

G- 1035

So we obtain p; + po = —1. Set 19y = k then po = —1 — k and we obtain

= ()= () )
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Since the second term (in red) is absorbed into k (so into the first solution x(1)),

we can set
@_ (1 At 0\
x <—1> te <—1> “

So the general solution is

x(t) = <_11> et + ¢y [(_ﬂ) tett 4 <_01> eﬂ

Example 10.2.8. Find the general solution of

, (3 —18
x = <2 _9>x. (10.36)

Sol. The characteristic equation is (3 — 7)(=9 — ) + 36 = (r + 3)? = 0. The

eigenvector are found from
6 —18\ (ki) (O

3

We get one eigenvector k = (?) Hence xM) = ¢ (1

) e 3. For the second

solution, we set

x? = kte ™ 4 pe~3. (10.38)

Substitute into DE., we see
(k(1 — 3t) — 3p)e™® = (Akt + Ap)e "
Comparing, we get

(A+3Dk=0, (A+3)p=k=3,1)7T.

(A+30p=k= <g __168> (g;) - (i’) . (10.39)

So 2p; — 6pa = 1. We have has many solutions. Set ps free so that

() =) ()

1
As before, we can set ps = 0 to get p <(2)> thus

1
x?) = kte 3! 4 pe¥ = (i’) te 3 4 (g) e 3.
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Hence the final solution is

1
X=cC (i’) e 3+ C2 [(i’) te 3t + <(2)> e_?’t] .

Multiplicity 3 - Third solution

Similar method works when the multiplicity is higher, say m = 3,4 etc. Assume
r is a multiple eigenvalue of multiplicity 3 and there is only one eigenvector
corresponding to it. Then the first and the second solution are given in the form
(10.27), (10.29), i.e., the first solution is

xM) = ke, (10.40)
where k satisfies
(A—rHk = 0. (10.41)
The second solution is
x? = kte™ + pe', (10.42)

where the vector p can be found by
(A-rI)p = k. (10.43)

Finally, the third solution is given by
2

t
xB) = k;e” + pte" 4 qe', (10.44)

where the vectors k, p can be found as follows:

(A—rDk = 0 (10.45)
(A-rD)p = k (10.46)
(A—rl)q = p. (10.47)

Example 10.2.9. Find the general solution of

2 1 6
xX=[02 5]x (10.48)
00 2
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Sol. The characteristic equation is (r — 2)3 = 0 so r = 2 is a triple root and
we have (A —21)k =0,

016 ky 0
0 0 5 kol =10
0 00 ks 0

Hence
ko +6k3 =0, bks =0=ky =k3 =0

and we obtain one independent eigenvector: k = (1,0, O)T. The first solution is

1
xM) = c1 |0 e?t
0
The second solution can be found by solving (A — 2I)p = k.
016 D1 1
0 05 p2| =10
0 00 D3 0
Solving we see ps + 6p3 = 1, bps =0 = p3 = 0,py = 1, p; is free. So we get
1 0
p=p (0] + |1
0 0
Since the first vector is included in k, we choose p; = 0. Hence
1 1 0 1 0
x® =kt +pet = (0|t +p [0+ 1]t =]0]teP+ 1] 2
0 0 0 0 0

Finally for the third, we solve (A —2I)q =p = (0,1,0)7, i.e.,

01 6\ /¢ 0 0
0 05 e|l=|1]=q= —g
00 0/ \g3 0 :
So the general solution is
£2
x = cike™ +colkte™ +pet] +c3 [kge” + pte™ + qe’]
1 1 0 N\ 2 (0 0
= |04 |O)t+ 1] +es|]O 5+ L+ (=2
0 0 0 0 0 :

Exercise 10.2.10. (1) Find the solution of DE.



200 CHAPTER 10. SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

(3) Find the general solution of

5 -3 -2
X =Ax=|8 -5 —4]|x
-4 3 3
10.2.3 Complex roots
Assume the characteristic equation of
x' = Ax (10.49)

has two complex conjugate roots r1 = A+ iu,ro = A — iy with the corresponding
eigenvectors k(M) and k(®). The solution in this case is

x4 ex® = e kWemt 4 kP erat)

Since A is real, the eigenvectors corresponding to rq, 79 are two complex conju-
gates vectors k() and k@ = kM), Set k() = a + ib, k@ =a —ib.
Since

x( = (a4 ib)eP it

= (a + ib)eM(cos ut + isin ut)
= eM(acos ut — bsin ut) + ieM (asin ut + b cos ut),
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x?) = (a— b))t
(a — ib)eM(cos ut — isin ut)

e”(a cos ut — bsin ut) — ie’\t(a sin ut + b cos put),
we see

u = M = eM(acos ut — bsin ut)

v = x<1>2—ix<2) = e’\t(b cos ut + asin ut)

are linearly independent. So we may write
X = cju+ v = ¢reM(acos ut — bsin pit) 4+ coeM (asin pt + b cos ut),

where a is the real part and b is the imaginary part of k(!) respectively.

Example 10.2.11. Solve x’ = <_13 ?) X.

Solution. The characteristic equation is

|A—rI| =

1—r 3
-3 1-r

‘:r?—m+40:0
from which we obtain » =1+ 3i. Whenry =1+ 33
-3¢ 3 ki (0
B -G o
We can choose eigenvectors
k) = <1> (10.51)

and the second vector is k(® = k(1) = < 1.). Hence

—1

< <1> I3 () <_12> (1-30)1

x4 x(2) _ gt cos 3t v x(1) — x(2) _ sin 3t
2 N —sin3t)’ 2i - cos 3t

or

u=

Thus the general solution is

4 cos3t ¢ (sin 3t
x(t) = cre <— sin 3t> + e <cos 3t>
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10.3 Diagonalization

In this section, consider an alternative method to find solutions. Assume we have
a system of DE:

x = Ax (10.52)
where an n X n matrix A has n-linearly independent eigenvectors corresponding
to A1, -0, A, e,

AK® = \ k@,

Let P be the matrix P whose columns consist of eigenvectors of A. Then using
the matrix P we can diagonalize the system:

Let P = (kM,... k(™). Then we have such that P~'AP = D where D =
diag(M\1, -+ ,Ap) is a diagonal matrix. Then with the substitution x = Py we

have
(Py) = APy &y = P_lAPy = Dy.

The last equation is easy to solve:

Yy A0 0 - 0 (7

yh 0 A0 0 Yo

Yn 0 0 0 - A/ \un

and the solution is y; = creMt, Yo = coeM2t Yn = cpe™t. Hence we have
cle)‘lt
cze)‘Qt
x = Py = (k... k™) = kWeMt 4.4 kMMt (10.53)

cpent.

Example 10.3.1. Solve 2 x 2 system of DE.
x' = 2 1 X
S\l 2/

det(A — AI) = 0.

Solution. The charac. eq. is

From this we have

_ _0\2 _ 1 _ _
om0 —1=0, A=13,

2— ) 1‘
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When A =1

r1+x9 = 0

r1+xz2o = 0
the eigenvector is

1

=i (1)
When A =3

—x1+x9 = 0

r1 — T2 =0

the eigenvector is

1
o (1)

Let k1 = < 11>, ko = <1> . Then with P = (kl,kg) = (_11 1) we have

-1 (1 0\ _
P AP—<0 3>—D.

X =cC <_11> el + Co G) et

Example 10.3.2 (p. 570). Solve the system of DE.

Thus

-2 -1 8
xX=10 -3 8]|x.
0 —4 9

From det(A —rI) =0, we get —(24+7)((r+3)(r—9)+32) = =2+ 7r)(r —
1)(r —5) = 0. Hence r = —2,1,5. Eigenvectors are

1 2 1
ki=[0], ke=[2],ks=[1
0 1 1
So
1 21 -2 0 0
P=[(0 2 1|, P'4P=D=|0 1 0
011 0 05
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The solution of the diagonal system y’ = Dy is y = (cle_2t, coel, 03e5t)T. Hence

1 21 cre 2t cre 2t + 2¢pet + c3e®
x=Py=[0 2 1 cel | = 2co€! 4 c3e™ . (10.54)
01 1 c3edt coet + czedt
1 2 1
x=c |[0eZ+e[2]e +e5|1] e
0 1 1

Exercise 10.3.3. (1) Find the solution of

RN )
(b) x"= (—32 —41> x () x'= (i) :61;> x
@ x=(5 ) ®x=(3 )
Wx=(; 3)x wx=(; 5

10.4 Nonhomogeneous Linear Systems
We now study how to solve nonhomogeneous linear system of DE
x' = Ax +f(t). (10.55)

As in the case of single DE. we separate the homogeneous case x’ = Ax and the
solution will be given by
X = Xp, + Xp,

where x;, is the solution of the homogeneous problem and x, is a particular
solution of the nonhomogeneous problem.

10.4.1 Method of Undetermined Coefficients

This works only when the coefficients of A are constant case, and right hand side
terms are constants, polynomials, exponential functions, sines, cosines
or finite linear combinations of such functions!

Example 10.4.1. Solve x' = <:1 ?) x + <_38>
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First the charac. eq. of homogeneous equation is

—1—-7 2
-1 1—r

And the eigenvectors corresponding to r = i, —i are (1 —4,1)” and (1 +,1)T.

Hence ‘ ‘
Xp = C1 (1 I Z) et + co (1 —1’_ Z) e

or take real part and imaginary part of

(cost +isint) (1_i> = <(1—i)005t+(i+1)sint>

1 cost +tsint

cost +sint . [ —cost+sint
= + 1 . .
cost sint

cost +sint —cost +sint
c1 + co . .
cost sint

Particular sol. Since f(t) is constant, we let x, = <Zl> and find
1

we get

0= Ax, 4 f — <—a1+2b1—8>
- » = .

—a1 +b1+3

So x, = <il>

6 1 6t
r_
Example 10.4.2 (nonconstant rhs). Solve x’ = <4 3> X+ (—1015 + 4>.

. . 1
Figenvalues are vy = 2,70 = 7 and the eigenvectors are x; = <_ 4> , Xg =

1 .
< 1). Hence the complementary solution is

1 1
Xe =01 <_4> e* + ¢ <1> e’

For a particular solution, let

a9 aq
o= (i) ()
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and substitute into the DE and find the numbers aq, b1, ao, bs.

a 6 1 as ay 6 0
() = GG 6] (o) )

0 . (6a2+b2+6)t—|—6a1—|—b1—a2

0 - (4daz + 3by — 10)t +4a; +3by —ba + 4

Hence

6as +bo+6 = 0 and 6a; + b1 — as =0
4as +3by —10 = 0 4a1+3by —ba+4 = 0

Solving first set of eqs we get as = —2,by = 6. We then substitute it into the
second set of eqs to get a1 = —%, b1 = %. Therefore

= () ()

and the general solution of DE is

1 1 -2 4
x = cl<_4>62t+62<1>67t+<6>t+<1_707>.

Example 10.4.3 (nonconstant rhs 2). Solve

d

d—f = br+3y—2et+1

d

d_i/ = —a4ytet—Bt4+T.

The rhs can be written as

Hence we try

o air\ —¢ a2 a
%, — <b1> et <b2> i <b1> .
Notice the difference in the candidates. Generally, we had better use the next
method.
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10.4.2 Variation of Parameters
A Fundamental matrix - Homogeneous system

If x1,--- ,%, are fundamental set of solutions of homog. system x’ = Ax, then
the general solution of homog. system is given by x = ¢1x7 4+ caXo + - - - + ¢ Xn,
or in matrix form

x = ®(t)c, (10.56)
where ¢ = (c1,c, -+ ,¢,)7, and ®(t) is the matrix whose columns are vectors
Xt =1,2,---,n:

Tl T12 o Tin

a1 T2 v T2p

®(t) =
Tnl Tp2 - Tnn

called a fundamental matrix. We note that
e The fundamental matrix ®(¢) is nonsingular

e If ®(¢) is a fundamental matrix of the system x’ = Ax, then

®'(t) = AD(t). (10.57)

Variation of Parameters - Nonhomogeneous system

To find a particular solution we may use the technique of section 3.5. i.e., replace
the constant coefficient ¢ by functions

uy(t)
u(t) = UQZ(t) (10.58)
(1)
so that x, = ®(t)u(t) is a particular solution of the system
x' = Ax +f. (10.59)

Taking derivative we obtain

x, = ®(t)u'(t) + @' (t)u(t). (10.60)

Substitute it into (10.59)

®(t)u'(t) + ' (t)u(t) = A®(t)u(t) + £(¢). (10.61)
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Since ®'(t) = A®(t) we have
®(t)u'(t) = £(t).

(10.62)

u'(t) = @) f(t) = ut) :/<I>(t)_1f(t)dt.

Since x, = ®(t)u(t) we have

Hence the general solution of the system is
x = ®(t)c+ <I>(t)/ ()" (t)dt.

Example 10.4.4. Solve the DE.

x— (‘23 _14> Xt (fft) .

The charac. equation is

-3 - 1

det(A—rI):‘ 9 4y

':(7“4—2)(7“—1—5)

Eigenvectors corresponding to r = —2,r = —5 are

(1) e (%)

The solution of homog. system is

1 1
c1 <1> e 24 Co <_2> e ot

The fundamental matrix is

e—2t 6_5t - 2t
20 = (Ca Gn) wd w0 = (1
Hence by (10.63)
_ e—2t 6_5t 2€2t
x(0) =0 [ o070 = (T 50n) [ (15
3
e—2t e—5t
= <6—2t _26—5t>
e—2t 6_5t
= <6—2t _26—5t>
6 27 1 _—t
8t 20 4 le
- (Boar)
5 50 2

(10.63)

(10.64)

(10.65)

=0.
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Hence the solution of the nonhomg system is

_ 1Y o LY s Op — 2L+ jet
0 = a(p)ea (G) e (o

Initial Value Problems

t
x(t) = ®(t)c + (1) / B(s) £ (s)ds. (10.66)
to
If the solution is to satisfy IC x(t9) = xo then we must have x(ty) = ®(tg)c, so
C = @(to)_lx(to).

Hence the solution of IVP is

x(t) = ®(t)®(tg) 'x(to) + ®(t) /t ®(s) "' f(s)ds. (10.67)

to

10.4.3 Nonhomogeneous Problem by Diagonalization

We assume A is diagonalizable. In other words, there exists a matrix P such that
P7YAP = D is diagonal
Substituting x = Py into x’ = Ax + f, we get
Py' = APy +fory = P APy + P~'f = Dy + P~ 'f.

Example 10.4.5. Solve the DE.
4 2 3et
X = <2 1> X + (et > . (10.68)

4 —r 2 ‘

The charac. equation is

=r(r—>5)=0.

det(A—rI):' 9  1—_p

Eigenvectors corresponding to r = 0,7 = 5 are

(L) o ()
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1 2

-2 1 2 1

pu- )0 ()

Thus P = < > and P! = % <1 _2>. Using x = Py and

Thus .
Yy = —¢' and yh = bys + get.
Solving for y we get
1 7
Y1 = get +e¢; and — %et + coedt.

Hence the solution is

1 2 Let 4 ¢
pr— pr— 5
X Py <—2 1> <—%et + coe®

_ <—let +c1 + 26265t>

o\ —3ef =20 + coedt

1 2 1
= afly)ra (D) (3)

10.5 Matrix exponential

[SV V)

To solve a system of linear ODE with constant coefficient (x’ = Ax), we can use
a method similar to scalar DE, i,e., setting x = e}, where the exponential of a
matrix has to be properly understood. We recall

. 2t2 tm x ktk
at _ O e —E —
e —1—|—at—|—a2!—|— a !—I— = ak!
k=0
We similarly define, for a matrix A :
At 2t2 mt ktk
= 4. - —E z
et =T+At+ A 2!+ + A !+ = Ak!' (10.69)

k=0
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Example 10.5.1. Find the ¢! when

2 0
A—<O 3>. (10.70)
Sol. ) X
9o (270 3 (220 n_ (2" 0
A_<0 32 » A7 = 0 33 » A% = 0o 3"
2
et = I+At+A2§+---+
10 2 0 22 0\ t* (23 0)\¢
- <0:J'%Q)3>ﬁ+<o ?)5?*(0 §>§T+”’
(1424228 4. 0 _<e2t 0>
B 0 14+3t+325 +...) \0 &
Thus for a n x n diagonal matrix A with diagonal entries ai,as, - ,an, we
see
e 0 .. 0 0
0 e=2t 0 -~ 0
oAt —

Derivatives of e

The derivatives of a matrix function can be computed as

d At _ At
7€ = Ae™. (10.71)

Use the series expansion (10.69).

d _ d 22 mt™
Zett = I At A A ]

2
= A+A2t+A3%+---
2
= AT+ At A4 4] = A,

We can show the general solution of the DE x’ = Ax is x = e4*C for some
constant vector C since

d
x' = %eAtC = Ae'C = Ax. (10.72)
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¢4t is a fundamental matrix

Let us write ®(t) = e’. Then we see ®/(t) = A® and ®(0) = €4 = I and
®(0) # 0 thus ®(¢) is a fundamental set of solutions, or a fundamental matrix.

Hence any solution of homog. system x’ = Ax is given by e4C for some
vector C.

Nonhomog. systems

In view of techniques studied for scalar equations we can see the solution of
x' = Ax + F(t) is given by

t
x =%, +x, = eMC + eAt/ e~ A5F (s)ds. (10.73)

to

A

Here e~4% is the matrix inverse of e* and obtained by replacing s by —s.

Laplace transform
Let us recall X () = e4? is the fundamental set of sols. satisfying the IC, i.e.
X' = AX, X(0) = 1. (10.74)
Use Laplace transform. If x(s) = £{X(t)} = L{e4*}, then we see
sx(s) — X(0) = Ax(s) or (sI — A)x(s) = I.

We have used small capital for transformed function and large capital for original
function. Multiplying its inverse, we see

x(s) = (sI — A)™'T = (sI — A)L.
In other words, £{e4} = (sI — A)~! or
et = L7 (sT — A)71Y. (10.75)

Compare this with the formula:

1
(s —a)

This result can be used to find a matrix exponential.

et = L7 }.
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Example 10.5.2. Use Laplace Transform to find e* when

A= <; :;) . (10.76)

In general a direction evaluation of et is very complicated. However, if we use
Laplace Transform of e’ and do some algebraic manipulation on s-space, then

use inverse Laplace Transform, we sometimes compute e easily.
Sol.  First recall £{e"} = L and so
L{eM} = (sT — A)7Lor et = L7(sT — A)71). (10.77)

We will compute (sI — A)~! first. Since

s—1 1
SI_A_<—2 s+2>’

s—1 1 -1 (s-i—2) -1 )
(SI—A)_1:< > — ssél-l ssll )
—2 s+2 s(s+1)  s(s+D)

Decomposing the entries we see

we have

—~

»
|

1 1 1
A i),
T s tE
Taking the inverse Laplace Transform, we get by (10.77)

QAL _ 2—et —1+4et
2 -2t —1+427t)"

® IN® [N

(sI — A~ = <



