Contents

10 System of Linear Differential Equations 185
10.1 Theory of Linear System 185
10.2 Homogeneous Linear System with constant coefficients 189
10.2.1 Real and distinct 190
10.2.2 Repeated eigenvalues of multiplicity m 194
10.2.3 Complex roots 200
10.3 Diagonalization 202
10.4 Nonhomogeneous Linear Systems 204
10.4.1 Method of Undetermined Coefficients 204
10.4.2 Variation of Parameters 207
10.4.3 Nonhomogeneous Problem by Diagonalization 209
10.5 Matrix exponential 210

Chapter 10

System of Linear Differential Equations

10.1 Theory of Linear System

We start from an example.
Example 10.1.1. Let $\mathbf{x}=\binom{x}{y}$ and consider the system of DE

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=-4 x+5 y
\end{aligned} \quad \text { or } \quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}
2 & 3 \\
-4 & 5
\end{array}\right) \mathbf{x}
$$

Example 10.1.2. Verification of solutions: The vector functions

$$
\mathbf{x}_{1}=\binom{1}{-1} e^{-2 t}=\binom{e^{-2 t}}{-e^{-2 t}} \text { and } \mathbf{x}_{2}=\binom{3}{5} e^{6 t}=\binom{3 e^{6 t}}{5 e^{6 t}}
$$

are solutions of the DE .

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 3 \tag{10.1}\\
5 & 3
\end{array}\right) \mathbf{x}
$$

More generally, we consider the first order system of linear differential equation in n-unknowns given by

$$
\begin{array}{rcc}
x_{1}^{\prime}= & a_{11}(t) x_{1}+\cdots a_{1 n}(t) x_{n}+f_{1}(t) \\
x_{2}^{\prime}= & a_{21}(t) x_{1}+\cdots a_{2 n}(t) x_{n}+f_{2}(t) \tag{10.2}\\
\cdot & \cdot & \cdots \\
x_{n}^{\prime}= & a_{n 1}(t) x_{1}+\cdots a_{n n}(t) x_{n}+f_{n}(t)
\end{array}
$$

In matrix form (10.2) becomes

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x}+\mathbf{f} \tag{10.3}
\end{equation*}
$$

where
$\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), \mathbf{x}^{\prime}=\left(\begin{array}{c}x_{1}^{\prime}(t) \\ \vdots \\ x_{n}^{\prime}(t)\end{array}\right), A(t)=\left(\begin{array}{cccc}a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\ \vdots & & & \vdots \\ a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)\end{array}\right), \mathbf{f}=\left(\begin{array}{c}f_{1}(t) \\ \vdots \\ f_{n}(t)\end{array}\right)$
Theorem 10.1.3. [Existence and uniqueness] Assume $a_{11}(t), a_{12}(t), \cdots, a_{1 n}(t)$, $\cdots, a_{n n}(t), f_{1}(t), \cdots, f_{n}(t)$ are continuous on the interval $a<t<b$. Then for $a<t_{0}<b$ the DE (10.2), or (10.3) has a unique solution satisfying ICs; $x_{1}\left(t_{0}\right)=$ $x_{1}^{0}, \cdots, x_{n}\left(t_{0}\right)=x_{n}^{0}$.

Consider the homogeneous case.

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x} \tag{10.4}
\end{equation*}
$$

Example 10.1.4. Consider the DE.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \mathbf{x}
$$

The solutions are

$$
\mathbf{x}_{1}(t)=\left(\begin{array}{c}
\cos t \\
-\frac{1}{2}(\cos t-\sin t) \\
-\cos t-\sin t
\end{array}\right) \text { and } \mathbf{x}_{2}(t)=\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right)
$$

Hence

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1}\left(\begin{array}{c}
\cos t \\
-\frac{1}{2}(\cos t-\sin t) \\
-\cos t-\sin t
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right)
$$

is another solution of the homogeneous system. Acually, there is a third solution.

Linear dependence/independence

Definition 10.1.5. [Linear independence] If $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ are solutions of (10.4) in $a<t<b$, then we say the set of solution vectors are linearly dependent dependent if there exist constants c_{1}, \cdots, c_{n}, not all zero, such that

$$
c_{1} \mathbf{x}^{(1)}+\cdots+c_{n} \mathbf{x}^{(n)}=0
$$

holds for all $t \in(a, b)$. Otherwise, they are called linearly independent.

Given a set of solution vectors

$$
\mathbf{x}^{(1)}=\left(\begin{array}{c}
x_{11} \\
\vdots \\
x_{n 1}
\end{array}\right), \mathbf{x}^{(2)}=\left(\begin{array}{c}
x_{12} \\
\vdots \\
x_{n 2}
\end{array}\right), \cdots, \mathbf{x}^{(n)}=\left(\begin{array}{c}
x_{1 n} \\
\vdots \\
x_{n n}
\end{array}\right)
$$

the Wronskian W is defined as

$$
W\left(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}\right)=\left|\begin{array}{ccc}
x_{11}(t) & \cdots & x_{1 n}(t) \tag{10.5}\\
\vdots & \cdots & \vdots \\
x_{n 1}(t) & \cdots & x_{n n}(t)
\end{array}\right|
$$

Theorem 10.1.6. [Criterion for linear independence] If $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ are solutions of (10.4) then the set of solution vectors are linearly independent if and only if

$$
\begin{equation*}
W\left(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}\right) \neq 0 . \tag{10.6}
\end{equation*}
$$

for every t in the interval.
Remark 10.1.7. To show the Wronskian is nonzero at all point, it suffices to show the Wronskian is nonzero at any one point.

Theorem 10.1.8. [Superposition principle] If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(n)}$ are the solutions of (10.4) then for any constants $c_{1}, c_{2}, \cdots, c_{n}$ the linear combination $c_{1} \mathbf{x}^{(1)}$ $+c_{2} \mathbf{x}^{(2)}+\cdots+c_{n} \mathbf{x}^{(n)}$ is also a solution of (10.4).

Now study the general solution of (10.4).
Theorem 10.1.9. [General solutions of system of homogenous DEs] If $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ are linear independent solutions of $D E$ (10.4) in $a<t<b$, then any solution $\phi(t)$ is given by a linear combination of $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$:

$$
\begin{equation*}
\phi(t)=c_{1} \mathbf{x}^{(1)}+\cdots+c_{n} \mathbf{x}^{(n)} \tag{10.7}
\end{equation*}
$$

Proof. Let $\boldsymbol{\phi}$ be any solution of (10.4). Fix a point $t_{0}\left(a<t_{0}<b\right)$, set $\phi\left(t_{0}\right)=$ $\mathbf{k}=\left(k_{1}, \cdots, k_{n}\right)$. Then for the general solution $c_{1} \mathbf{x}^{(1)}+\cdots+c_{n} \mathbf{x}^{(n)}$ to satisfy the $\operatorname{ICs} \mathbf{x}\left(t_{0}\right)=\mathbf{k}$, i.e.,

$$
\begin{equation*}
c_{1} \mathbf{x}^{(1)}\left(t_{0}\right)+\cdots+c_{n} \mathbf{x}^{(n)}\left(t_{0}\right)=\mathbf{k} \tag{10.8}
\end{equation*}
$$

we must have

$$
\begin{aligned}
c_{1} x_{11}\left(t_{0}\right)+\cdots+c_{n} x_{1 n}\left(t_{0}\right) & =k_{1}, \\
& \cdots \\
c_{1} x_{n 1}\left(t_{0}\right)+\cdots+c_{n} x_{n n}\left(t_{0}\right) & =k_{n} .
\end{aligned}
$$

This is a system of linear equations in c_{1}, \cdots, c_{n}. By hypothesis, the functions are linearly independent, i.e.,

$$
\begin{equation*}
W\left(\mathbf{x}^{(1)}\left(t_{0}\right), \cdots, \mathbf{x}^{(n)}\left(t_{0}\right)\right) \neq 0 \tag{10.9}
\end{equation*}
$$

Hence the solution c_{1}, \cdots, c_{n} exists uniquely. Thus the solution of the IVP is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}+\cdots+c_{n} \mathbf{x}^{(n)}$.

Definition 10.1.10. Any set $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ of n linearly independent solution vectors is said to be fundamental set of solutions of (10.4).

For simplicity we consider the case $t_{0}=0$ only.
Theorem 10.1.11. Let $\mathbf{x}^{(i)},(i=1,2, \cdots, n)$ be the solution of IVPs

$$
\begin{align*}
\mathbf{x}^{\prime}(t) & =A(t) \mathbf{x} \\
\mathbf{x}(0) & =\mathbf{e}^{(i)} . \tag{10.10}
\end{align*}
$$

Then $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ are the fundamental set of solutions. For any IC. $\mathbf{x}(0)=\mathbf{k}=$ $\left(k_{1}, \cdots, k_{n}\right)^{T}$, the solution satisfying the IC. is given by

$$
\begin{equation*}
\mathbf{x}(t)=k_{1} \mathbf{x}^{(1)}(t)+\cdots+k_{n} \mathbf{x}^{(n)}(t) . \tag{10.11}
\end{equation*}
$$

Proof. Since $W\left[\mathbf{x}^{(1)}(0), \cdots, \mathbf{x}^{(n)}(0)\right]=\operatorname{det} I=1 \neq 0$ we see $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ are fundamental set of solutions. Clearly (10.11) satisfy IC.

Let

$$
X(t)=\left(\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)\right) .
$$

Then any solution satisfying the initial condition (10.8) is given by $\mathbf{x}(t)=X(t) \mathbf{k}$.

Nonhomogeneous System

If \mathbf{x}_{p} is a particular solution of nonhomogeneous system

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x}+\mathbf{f}(t) \tag{10.12}
\end{equation*}
$$

then the general solution of (10.12) is given by

$$
\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}
$$

where $\mathbf{x}_{c}=c_{1} \mathbf{x}^{(1)}+\cdots+c_{n} \mathbf{x}^{(n)}$ is the general solution of associated homogeneous system.

10.2 Homogeneous Linear System with constant coefficients

Here we will study how to find fundamental set of solutions.
First consider the DE.

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
1 & 3 \\
5 & 3
\end{array}\right) \mathrm{x}
$$

The solutions are

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1}\binom{1}{-1} e^{-2 t}+c_{2}\binom{3}{5} e^{6 t} .
$$

Both solutions are has the form

$$
\mathbf{x}_{i}=\binom{k_{1}}{k_{2}} e^{r_{i} t} .
$$

We will see the solution is generally given in this form when the matrix A has constant coefficients.

Eigenvalues and Eigenvectors

Given $n \times n$ matrix A consider the DE

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x} . \tag{10.13}
\end{equation*}
$$

For a vector $\mathbf{k} \in \mathbb{R}^{n}$ we assume

$$
\begin{equation*}
\mathbf{x}=\mathbf{k} e^{r t} \tag{10.14}
\end{equation*}
$$

and substitute into (10.13) we obtain

$$
r \mathbf{k} e^{r t}=A \mathbf{k} e^{r t} .
$$

Dividing by $e^{r t}$ we obtain

$$
A \mathbf{k}=r \mathbf{k}
$$

From this we get

$$
\begin{equation*}
\operatorname{det}(A-r I)=0 . \tag{10.15}
\end{equation*}
$$

This is called the characteristic equation. Solving the eigenvalue problem we obtain the solution of $\mathbf{x}=\mathbf{k} e^{r t}$.

Depending on the roots(eigenvalues) of the characteristic equation, the solution methods are classified into the following cases:
(1) Real and distinct eigenvalues
(2) Repeated eigenvalues (real)
(3) Complex eigenvalues

10.2.1 Real and distinct

When the eigenvalues of A are real and distinct, then general solution is given by

$$
\mathbf{x}(t)=c_{1} \mathbf{k}^{(1)} e^{r_{1} t}+c_{2} \mathbf{k}^{(2)} e^{r_{2} t}+\cdots+c_{3} \mathbf{k}^{(n)} e^{r_{n} t}
$$

Example 10.2.1. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is

$$
\begin{gather*}
\left(\begin{array}{cc}
1-r & -2 \\
3 & -4-r
\end{array}\right)\binom{k_{1}}{k_{2}}=0 \tag{10.16}\\
|A-r I|=\left|\begin{array}{cc}
1-r & -2 \\
3 & -4-r
\end{array}\right|=r^{2}+3 r+2=0
\end{gather*}
$$

So $r_{1}=-1, r_{2}=-2$.
(1) Case $r_{1}=-1$:

$$
\left(\begin{array}{ll}
2 & -2 \tag{10.17}\\
3 & -3
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0}
$$

So $k_{1}-k_{2}=0$ and we can choose

$$
\begin{equation*}
\mathbf{k}^{(1)}=\binom{1}{1} \tag{10.18}
\end{equation*}
$$

(2) Case $r=-2$:

$$
\left(\begin{array}{ll}
3 & -2 \tag{10.19}\\
3 & -2
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0}
$$

So $3 k_{1}-2 k_{2}=0$ and we can choose

$$
\begin{equation*}
\mathbf{k}^{(1)}=\binom{2}{3} \tag{10.20}
\end{equation*}
$$

Finally we have

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{-t}+c_{2}\binom{2}{3} e^{-2 t}
$$

Example 10.2.2. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) \mathbf{x}
$$

The characteristic equation is

$$
\begin{gather*}
(A-r I) \mathbf{k}=\left(\begin{array}{ccc}
1-r & 1 & 2 \\
1 & 2-r & 1 \\
2 & 1 & 1-r
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right)=0 . \tag{10.21}\\
|A-r I|=\left|\begin{array}{ccc}
1-r & 1 & 2 \\
1 & 2-r & 1 \\
2 & 1 & 1-r
\end{array}\right| \\
\quad=-r^{3}+4 r^{2}+r-4=-(r-4)(r-1)(r+1)=0
\end{gather*}
$$

So $r_{1}=4, r_{2}=1, r_{3}=-1$.
(1) $r=4$:

$$
\begin{align*}
\left(\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right) & =0 \tag{10.22}\\
-3 k_{1}+k_{2}+2 k_{3} & =0 \\
k_{1}-2 k_{2} & +k_{3}
\end{align*}=0 .
$$

Choose $k_{3}=1$ so that

$$
\begin{aligned}
-3 k_{1}+k_{2} & =-2 \\
k_{1}-2 k_{2} & =-1 \\
2 k_{1}+k_{2} & =3
\end{aligned}
$$

from which we obtain $k_{1}=1, k_{2}=1$, i.e.,

$$
\mathbf{x}^{(1)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{4 t}
$$

(2) $r=1:$

$$
\left(\begin{array}{lll}
0 & 1 & 2 \tag{10.23}\\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right)=0
$$

$$
\begin{aligned}
k_{2}+2 k_{3} & =0 \\
k_{1}+k_{2}+k_{3} & =0 \\
2 k_{1}+k_{2} &
\end{aligned}
$$

Choose $k_{1}=1$ so that

$$
\begin{aligned}
& k_{2}+2 k_{3}=0 \\
& k_{2}+k_{3}=-1 \\
& k_{2} \\
&=-2
\end{aligned}
$$

from which $k_{2}=-2, k_{3}=1$, i.e.,

$$
\mathbf{x}^{(2)}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) e^{t}
$$

(3) $r=-1$:

$$
\begin{align*}
\left(\begin{array}{ccc}
2 & 1 & 2 \\
1 & 3 & 1 \\
2 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right) & =0 . \tag{10.24}\\
2 k_{1}+k_{2}+2 k_{3} & =0 \\
k_{1}+3 k_{2}+k_{3} & =0 \\
2 k_{1}+k_{2}+2 k_{3} & =0 .
\end{align*}
$$

Choose $k_{3}=1$ then

$$
\begin{aligned}
2 k_{1}+k_{2} & =-2 \\
k_{1}+3 k_{2} & =-1 \\
2 k_{1}+k_{2} & =-2
\end{aligned}
$$

from which $k_{1}=-1, k_{2}=0$, i.e.,

$$
\mathbf{x}^{(3)}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) e^{-t}
$$

Hence the general solution is

$$
\mathbf{x}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{4 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) e^{-t}
$$

Remark 10.2.3. In this example A is symmetric, in which case it is known that there always exist n linearly independent vectors. So finding the solution is simple.

Phase portrait or Phase plane

Example 10.2.4.

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is

$$
|A-r I|=\left|\begin{array}{cc}
2-r & 3 \\
2 & 1-r
\end{array}\right|=(r+1)(r-4)=0, r_{1}=-1, r_{2}=4
$$

For $r=-1$ the eigenvector is $\mathbf{k}_{1}=(1,-1)^{T}$. For $r=4$ the eigenvector is $\mathbf{k}_{2}=(3,2)^{T}$. So the solution of DE. is

$$
\mathbf{x}=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{3}{2} e^{4 t}
$$

If we eliminate parameter t and get relation between x and y, (use various constants) then we get certain relations. For example, if $c_{1}=1, c_{2}=0$, we get $x(t)=$ $e^{-t}, y(t)=-e^{-t}$, hence $y=-x$. If $c_{1}=0, c_{2}=1$, we get $x(t)=3 e^{4 t}, y(t)=2 e^{4 t}$ and hence $y=\frac{2}{3} x$. These solutions corresponds to the two blue lines.

Exercise 10.2.5. (1) Find the solution of the following DE.
(a)

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \mathrm{x}
$$

(b)

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathrm{x}
$$

(c)

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \mathrm{x}
$$

(d)

$$
\mathrm{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) \mathbf{x}, \quad \mathrm{x}(0)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(e)

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
2 & 0 & 0 \\
-1 & 2 & 4
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

10.2.2 Repeated eigenvalues of multiplicity m

Assume r is a repeated eigenvalue of multiplicity m. There are two cases:

- There exists m linearly independent eigenvectors $\mathbf{k}^{(1)}, \cdots, \mathbf{k}^{(m)}$ corresponding to the eigenvalue r. In this case, the m-linearly independent solutions are given by

$$
c_{1} \mathbf{k}^{(1)} e^{r_{1} t}+\cdots+c_{m} \mathbf{k}^{(m)} e^{r_{m} t}
$$

- There exists only one linearly independent eigenvector $\mathbf{k}^{(1)}$ corresponding to the eigenvalue r. In this case, the m-linearly independent solutions are given by (Solve the system in this order)

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathbf{k}^{(1)} e^{r_{1} t} \\
\mathbf{x}_{2} & =\mathbf{k}^{(1)} t e^{r_{1} t}+\mathbf{k}^{(2)} e^{r_{1} t} \\
\mathbf{x}_{2} & =\mathbf{k}^{(1)} \frac{t^{2}}{2!} e^{r_{1} t}+\mathbf{k}^{(2)} t e^{r_{1} t}+\mathbf{k}^{(3)} e^{r_{1} t} \\
& =\cdots \\
\mathbf{x}_{m} & =\mathbf{k}^{(1)} \frac{t^{m-1}}{(m-1)!} e^{r_{1} t}+\mathbf{k}^{(2)} \frac{t^{m-2}}{(m-2)!} e^{r_{1} t}+\cdots+\mathbf{k}^{(m)} e^{r_{1} t} .
\end{aligned}
$$

Vectors $\mathbf{k}^{(1)}, \mathbf{k}^{(2)}$ through $\mathbf{k}^{(m)}$ are obtained by substituting these expressions into the D.E.

Example 10.2.6. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
1 & -2 & 2 \tag{10.25}\\
-2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is

$$
\left|\begin{array}{ccc}
1-r & -2 & 2 \tag{10.26}\\
-2 & 1-r & -2 \\
2 & -2 & 1-r
\end{array}\right|=-(r+1)^{2}(r-5)=0
$$

For $r=-1$

$$
\left(\begin{array}{ccc}
2 & -2 & 2 \\
-2 & 2 & -2 \\
2 & -2 & 2
\end{array}\right) \mathbf{k}^{(1)}=\mathbf{0}
$$

Thus we have $k_{1}-k_{2}+k_{3}=0$. The two independent solution vectors are $\mathbf{k}^{(1)}=(1,1,0)^{T}$ and $\mathbf{k}^{(2)}=(0,1,1)^{T}$. For $r=5$,

$$
\left(\begin{array}{ccc}
-4 & -2 & 2 \\
-2 & -4 & -2 \\
2 & -2 & -4
\end{array}\right) \mathbf{k}^{(3)}=\mathbf{0}
$$

So $\mathbf{k}^{(3)}=(1,-1,1)^{T}$. In this case, there are three independent vectors. Hence the general solution is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{k}^{(1)} e^{-t}+c_{2} \mathbf{k}^{(2)} e^{-t}+c_{3} \mathbf{k}^{(3)} e^{5 t}
$$

Less than m-Linearly independent eigenvectors - Second solution

When r is a multiple eigenvalue of multiplicity 2 and if there is only one eigenvector corresponding to it then the first solution is given by as before,

$$
\begin{equation*}
\mathbf{x}^{(1)}=\mathbf{k} e^{r t} \tag{10.27}
\end{equation*}
$$

where \mathbf{k} satisfies

$$
\begin{equation*}
(A-r I) \mathbf{k}=0 \tag{10.28}
\end{equation*}
$$

The second solution is

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{k} t e^{r t}+\mathbf{p} e^{r t} \tag{10.29}
\end{equation*}
$$

where the vector \mathbf{p} can be found by

$$
\begin{equation*}
(A-r I) \mathbf{p}=\mathbf{k} \tag{10.30}
\end{equation*}
$$

The final solution is

$$
\mathbf{x}=c_{1} \mathbf{k} e^{r t}+c_{2}\left(\mathbf{k} t e^{r t}+\mathbf{p} e^{r t}\right)
$$

Example 10.2.7. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
3 & -1 \tag{10.31}\\
1 & 5
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is

$$
\begin{gather*}
\left(\begin{array}{cc}
3-r & -1 \\
1 & 5-r
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0} . \tag{10.32}\\
|A-r I|=\left|\begin{array}{cc}
3-r & -1 \\
1 & 5-r
\end{array}\right|=(r-4)^{2}=0
\end{gather*}
$$

So $r=r_{1}=r_{2}=4$ and the equation to for the eigenvectors is:

$$
\begin{array}{rll}
-k_{1} & -k_{2} & =0 \\
k_{1} & +k_{2} & =0
\end{array}
$$

Solving it, we get $k_{1}=1, k_{2}=-1$. Hence we have only one linearly independent vector:

$$
\mathbf{k}=\binom{1}{-1}
$$

from which we get one solution:

$$
\mathbf{x}^{(1)}=\binom{1}{-1} e^{4 t}
$$

We need to find another linearly independent solution. Recall scalar case, we tried: $x(t)=c_{1} e^{r t}+c_{2} t e^{r t}$. So we may try a solution like $\mathbf{k} t e^{4 t}$, but this is not enough! We have to add a term corresponding to the derivative of $\mathbf{k} t e^{4 t}$. Thus try

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{k} t e^{4 t}+\mathbf{p} e^{4 t} \tag{10.33}
\end{equation*}
$$

Substitute this into the DE., we get

$$
\begin{align*}
(A-4 I) \mathbf{p} & =\mathbf{k} \tag{10.34}\\
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{p_{1}}{p_{2}} & =\binom{1}{-1} . \tag{10.35}
\end{align*}
$$

So we obtain $p_{1}+p_{2}=-1$. Set $\eta_{1}=k$ then $p_{2}=-1-k$ and we obtain

$$
\mathbf{p}=\binom{k}{-1-k}=\binom{0}{-1}+k\binom{1}{-1} .
$$

10.2. HOMOGENEOUS LINEAR SYSTEM WITH CONSTANT COEFFICIENTS197

Since the second term (in red) is absorbed into \mathbf{k} (so into the first solution $\mathbf{x}^{(1)}$), we can set

$$
\mathbf{x}^{(2)}=\binom{1}{-1} t e^{4 t}+\binom{0}{-1} e^{4 t}
$$

So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{-1} e^{4 t}+c_{2}\left[\binom{1}{-1} t e^{4 t}+\binom{0}{-1} e^{4 t}\right]
$$

Example 10.2.8. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
3 & -18 \tag{10.36}\\
2 & -9
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is $(3-r)(-9-r)+36=(r+3)^{2}=0$. The eigenvector are found from

$$
\left(\begin{array}{cc}
6 & -18 \tag{10.37}\\
2 & -6
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0}
$$

We get one eigenvector $\mathbf{k}=\binom{3}{1}$. Hence $\mathbf{x}^{(1)}=c_{1}\binom{3}{1} e^{-3 t}$. For the second solution, we set

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{k} t e^{-3 t}+\mathbf{p} e^{-3 t} \tag{10.38}
\end{equation*}
$$

Substitute into DE., we see

$$
(\mathbf{k}(1-3 t)-3 \mathbf{p}) e^{-3 t}=(A \mathbf{k} t+A \mathbf{p}) e^{-3 t}
$$

Comparing, we get

$$
\begin{align*}
& (A+3 I) \mathbf{k}=0, \quad(A+3 I) \mathbf{p}=\mathbf{k}=(3,1)^{T} \\
& (A+3 I) \mathbf{p}=\mathbf{k} \Rightarrow\left(\begin{array}{cc}
6 & -18 \\
2 & -6
\end{array}\right)\binom{p_{1}}{p_{2}}=\binom{3}{1} . \tag{10.39}
\end{align*}
$$

So $2 p_{1}-6 p_{2}=1$. We have has many solutions. Set p_{2} free so that

$$
\binom{3 p_{2}+\frac{1}{2}}{p_{2}}=\binom{\frac{1}{2}}{0}+p_{2}\binom{3}{1}
$$

As before, we can set $p_{2}=0$ to get $\mathbf{p}=\binom{\frac{1}{2}}{0}$, thus

$$
\mathbf{x}^{(2)}=\mathbf{k} t e^{-3 t}+\mathbf{p} e^{-3 t}=\binom{3}{1} t e^{-3 t}+\binom{\frac{1}{2}}{0} e^{-3 t}
$$

Hence the final solution is

$$
\mathbf{x}=c_{1}\binom{3}{1} e^{-3 t}+c_{2}\left[\binom{3}{1} t e^{-3 t}+\binom{\frac{1}{2}}{0} e^{-3 t}\right] .
$$

Multiplicity 3 - Third solution

Similar method works when the multiplicity is higher, say $m=3,4$ etc. Assume r is a multiple eigenvalue of multiplicity 3 and there is only one eigenvector corresponding to it. Then the first and the second solution are given in the form (10.27), (10.29), i.e., the first solution is

$$
\begin{equation*}
\mathbf{x}^{(1)}=\mathbf{k} e^{r t}, \tag{10.40}
\end{equation*}
$$

where \mathbf{k} satisfies

$$
\begin{equation*}
(A-r I) \mathbf{k}=0 \tag{10.41}
\end{equation*}
$$

The second solution is

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{k} t e^{r t}+\mathbf{p} e^{r t}, \tag{10.42}
\end{equation*}
$$

where the vector \mathbf{p} can be found by

$$
\begin{equation*}
(A-r I) \mathbf{p}=\mathbf{k} . \tag{10.43}
\end{equation*}
$$

Finally, the third solution is given by

$$
\begin{equation*}
\mathbf{x}^{(3)}=\mathbf{k} \frac{t^{2}}{2} e^{r t}+\mathbf{p} t e^{r t}+\mathbf{q} e^{r t}, \tag{10.44}
\end{equation*}
$$

where the vectors \mathbf{k}, \mathbf{p} can be found as follows:

$$
\begin{align*}
(A-r I) \mathbf{k} & =0 \tag{10.45}\\
(A-r I) \mathbf{p} & =\mathbf{k} \tag{10.46}\\
(A-r I) \mathbf{q} & =\mathbf{p} \tag{10.47}
\end{align*}
$$

Example 10.2.9. Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
2 & 1 & 6 \tag{10.48}\\
0 & 2 & 5 \\
0 & 0 & 2
\end{array}\right) \mathbf{x}
$$

Sol. The characteristic equation is $(r-2)^{3}=0$ so $r=2$ is a triple root and we have $(A-2 I) \mathbf{k}=0$,

$$
\left(\begin{array}{lll}
0 & 1 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Hence

$$
k_{2}+6 k_{3}=0,5 k_{3}=0 \Rightarrow k_{2}=k_{3}=0
$$

and we obtain one independent eigenvector: $\mathbf{k}=(1,0,0)^{T}$. The first solution is

$$
\mathbf{x}^{(1)}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{2 t}
$$

The second solution can be found by solving $(A-2 I) \mathbf{p}=\mathbf{k}$.

$$
\left(\begin{array}{lll}
0 & 1 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Solving we see $p_{2}+6 p_{3}=1,5 p_{3}=0 \Rightarrow p_{3}=0, p_{2}=1, p_{1}$ is free. So we get

$$
\mathbf{p}=p_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Since the first vector is included in \mathbf{k}, we choose $p_{1}=0$. Hence

$$
\mathbf{x}^{(2)}=\mathbf{k} t e^{r t}+\mathbf{p} e^{r t}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) t e^{2 t}+p_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{2 t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{2 t}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) t e^{2 t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{2 t}
$$

Finally for the third, we solve $(A-2 I) \mathbf{q}=\mathbf{p}=(0,1,0)^{T}$, i.e.,

$$
\left(\begin{array}{lll}
0 & 1 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \Rightarrow \mathbf{q}=\left(\begin{array}{c}
0 \\
-\frac{6}{5} \\
\frac{1}{5}
\end{array}\right) .
$$

So the general solution is

$$
\begin{aligned}
\mathbf{x} & =c_{1} \mathbf{k} e^{r t}+c_{2}\left[\mathbf{k} t e^{r t}+\mathbf{p} e^{r t}\right]+c_{3}\left[\mathbf{k} \frac{t^{2}}{2} e^{r t}+\mathbf{p} t e^{r t}+\mathbf{q} e^{r t}\right] \\
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{2 t}+c_{2}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) t+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right] e^{2 t}+c_{3}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{t^{2}}{2}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) t+\left(\begin{array}{c}
0 \\
-\frac{6}{5} \\
\frac{1}{5}
\end{array}\right)\right] e^{2 t} .
\end{aligned}
$$

Exercise 10.2.10. (1) Find the solution of DE.
(a) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) \mathrm{x}$
(e) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & 0 \\ 2 & -1\end{array}\right) \mathbf{x}$
(b) $x^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right) x$
(f) $x^{\prime}=\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right) x$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}4 & -9 \\ 1 & -2\end{array}\right) \mathbf{x}$
(g) $\mathrm{x}^{\prime}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right) \mathbf{x}$
(d) $x^{\prime}=\left(\begin{array}{cc}-\frac{1}{2} & \frac{1}{4} \\ -1 & -\frac{3}{2}\end{array}\right) \mathbf{x}$
(2) Solve the IVP:
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{1}{1}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{1}{0}$
(b) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right) \mathbf{x}, \quad \mathrm{x}(0)=\binom{2}{3}$
(d) $\mathrm{x}^{\prime}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right) \mathrm{x}, \mathrm{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(3) Find the general solution of

$$
\mathbf{x}^{\prime}=A \mathbf{x}=\left(\begin{array}{ccc}
5 & -3 & -2 \\
8 & -5 & -4 \\
-4 & 3 & 3
\end{array}\right) \mathbf{x}
$$

10.2.3 Complex roots

Assume the characteristic equation of

$$
\begin{equation*}
\mathrm{x}^{\prime}=A \mathbf{x} \tag{10.49}
\end{equation*}
$$

has two complex conjugate roots $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$ with the corresponding eigenvectors $\mathbf{k}^{(1)}$ and $\mathbf{k}^{(2)}$. The solution in this case is

$$
c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)}=c_{1} \mathbf{k}^{(1)} e^{r_{1} t}+c_{2} \mathbf{k}^{(2)} e^{r_{2} t}
$$

Since A is real, the eigenvectors corresponding to r_{1}, r_{2} are two complex conjugates vectors $\mathbf{k}^{(1)}$ and $\mathbf{k}^{(2)}=\overline{\mathbf{k}}^{(1)}$. Set $\mathbf{k}^{(1)}=\mathbf{a}+i \mathbf{b}, \mathbf{k}^{(2)}=\mathbf{a}-i \mathbf{b}$.

Since

$$
\begin{aligned}
\mathbf{x}^{(1)} & =(\mathbf{a}+i \mathbf{b}) e^{(\lambda+i \mu) t} \\
& =(\mathbf{a}+i \mathbf{b}) e^{\lambda t}(\cos \mu t+i \sin \mu t) \\
& =e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t),
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{(2)} & =(\mathbf{a}-i \mathbf{b}) e^{(\lambda-i \mu) t} \\
& =(\mathbf{a}-i \mathbf{b}) e^{\lambda t}(\cos \mu t-i \sin \mu t) \\
& =e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)-i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{aligned}
$$

we see

$$
\begin{aligned}
& \mathbf{u}=\frac{\mathbf{x}^{(1)}+\mathbf{x}^{(2)}}{2}=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
& \mathbf{v}=\frac{\mathbf{x}^{(1)}-\mathbf{x}^{(2)}}{2 i}=e^{\lambda t}(\mathbf{b} \cos \mu t+\mathbf{a} \sin \mu t)
\end{aligned}
$$

are linearly independent. So we may write

$$
\mathbf{x}=c_{1} \mathbf{u}+c_{2} \mathbf{v}=c_{1} e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+c_{2} e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
$$

where \mathbf{a} is the real part and \mathbf{b} is the imaginary part of $\mathbf{k}^{(1)}$ respectively.
Example 10.2.11. \quad Solve $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 3 \\ -3 & 1\end{array}\right) \mathbf{x}$.
Solution. The characteristic equation is

$$
|A-r I|=\left|\begin{array}{cc}
1-r & 3 \\
-3 & 1-r
\end{array}\right|=r^{2}-2 r+10=0
$$

from which we obtain $r=1 \pm 3 i$. When $r_{1}=1+3 i$

$$
\left(\begin{array}{cc}
-3 i & 3 \tag{10.50}\\
-3 & -3 i
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0}
$$

We can choose eigenvectors

$$
\begin{equation*}
\mathbf{k}^{(1)}=\binom{1}{i} \tag{10.51}
\end{equation*}
$$

and the second vector is $\mathbf{k}^{(2)}=\overline{\mathbf{k}^{(1)}}=\binom{1}{-i}$. Hence

$$
\mathbf{x}^{(1)}=\binom{1}{i} e^{(1+3 i) t}, \quad \mathbf{x}^{(2)}=\binom{1}{-i} e^{(1-3 i) t}
$$

or

$$
\mathbf{u}=\frac{\mathbf{x}^{(1)}+\mathbf{x}^{(2)}}{2}=e^{t}\binom{\cos 3 t}{-\sin 3 t}, \quad \mathbf{v}=\frac{\mathbf{x}^{(1)}-\mathbf{x}^{(2)}}{2 i}=e^{t}\binom{\sin 3 t}{\cos 3 t}
$$

Thus the general solution is

$$
\mathbf{x}(t)=c_{1} e^{t}\binom{\cos 3 t}{-\sin 3 t}+c_{2} e^{t}\binom{\sin 3 t}{\cos 3 t}
$$

10.3 Diagonalization

In this section, consider an alternative method to find solutions. Assume we have a system of DE:

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x} \tag{10.52}
\end{equation*}
$$

where an $n \times n$ matrix A has n-linearly independent eigenvectors corresponding to $\lambda_{1}, \cdots, \lambda_{n}$, i.e.,

$$
A \mathbf{k}^{(i)}=\lambda_{i} \mathbf{k}^{(i)}
$$

Let P be the matrix P whose columns consist of eigenvectors of A. Then using the matrix P we can diagonalize the system:

Let $P=\left(\mathbf{k}^{(1)}, \cdots, \mathbf{k}^{(n)}\right)$. Then we have such that $P^{-1} A P=D$ where $D=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is a diagonal matrix. Then with the substitution $\mathbf{x}=P \mathbf{y}$ we have

$$
(P \mathbf{y})^{\prime}=A P \mathbf{y} \Leftrightarrow \mathbf{y}^{\prime}=P^{-1} A P \mathbf{y}=D \mathbf{y} .
$$

The last equation is easy to solve:

$$
\left(\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

and the solution is $y_{1}=c_{1} e^{\lambda_{1} t}, y_{2}=c_{2} e^{\lambda_{2} t}, \cdots, y_{n}=c_{n} e^{\lambda_{n} t}$. Hence we have

$$
\mathbf{x}=P \mathbf{y}=\left(\mathbf{k}^{(1)}, \cdots, \mathbf{k}^{(n)}\right)\left(\begin{array}{c}
c_{1} e^{\lambda_{1} t} \tag{10.53}\\
c_{2} e^{\lambda_{2} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right)=c_{1} \mathbf{k}^{(1)} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{k}^{(n)} e^{\lambda_{n} t}
$$

Example 10.3.1. Solve 2×2 system of DE.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \mathbf{x}
$$

Solution. The charac. eq. is

$$
\operatorname{det}(A-\lambda I)=0
$$

From this we have

$$
\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=(\lambda-2)^{2}-1=0, \quad \lambda=1,3
$$

When $\lambda=1$

$$
\begin{aligned}
& x_{1}+x_{2}=0 \\
& x_{1}+x_{2}=0
\end{aligned}
$$

the eigenvector is

$$
\mathbf{k}_{1}=k_{1}\binom{1}{-1}
$$

When $\lambda=3$

$$
\begin{aligned}
-x_{1}+x_{2} & =0 \\
x_{1}-x_{2} & =0
\end{aligned}
$$

the eigenvector is

$$
\mathbf{k}_{2}=k_{2}\binom{1}{1}
$$

Let $\mathbf{k}_{1}=\binom{1}{-1}, \mathbf{k}_{2}=\binom{1}{1}$. Then with $P=\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ we have

$$
P^{-1} A P=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)=D
$$

Thus

$$
\mathbf{x}=c_{1}\binom{1}{-1} e^{t}+c_{2}\binom{1}{1} e^{3 t}
$$

Example 10.3.2 (p. 570). Solve the system of DE.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
-2 & -1 & 8 \\
0 & -3 & 8 \\
0 & -4 & 9
\end{array}\right) \mathbf{x}
$$

From $\operatorname{det}(A-r I)=0$, we get $-(2+r)((r+3)(r-9)+32)=-(2+r)(r-$ $1)(r-5)=0$. Hence $r=-2,1,5$. Eigenvectors are

$$
\mathbf{k}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{k}_{2}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right), \mathbf{k}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

So

$$
P=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right), \quad P^{-1} A P=D=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

The solution of the diagonal system $\mathbf{y}^{\prime}=D \mathbf{y}$ is $\mathbf{y}=\left(c_{1} e^{-2 t}, c_{2} e^{t}, c_{3} e^{5 t}\right)^{T}$. Hence

$$
\begin{gather*}
\mathbf{x}=P \mathbf{y}=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
c_{1} e^{-2 t} \\
c_{2} e^{t} \\
c_{3} e^{5 t}
\end{array}\right)=\left(\begin{array}{c}
c_{1} e^{-2 t}+2 c_{2} e^{t}+c_{3} e^{5 t} \\
2 c_{2} e^{t}+c_{3} e^{5 t} \\
c_{2} e^{t}+c_{3} e^{5 t}
\end{array}\right) . \tag{10.54}\\
\mathbf{x}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{5 t} .
\end{gather*}
$$

Exercise 10.3.3. (1) Find the solution of
(a) $x^{\prime}=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right) \mathbf{x}$
(e) $x^{\prime}=\left(\begin{array}{cc}-\frac{1}{2} & 1 \\ -1 & -\frac{3}{2}\end{array}\right) \mathbf{x}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}3 & 4 \\ -2 & -1\end{array}\right) \mathbf{x}$
(f) $x^{\prime}=\left(\begin{array}{ll}3 & -8 \\ 1 & -1\end{array}\right) \mathbf{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & -3 \\ 3 & 3\end{array}\right) \mathbf{x}$
(g) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & -1 \\ 2 & -1\end{array}\right) \mathbf{x}$
(d) $x^{\prime}=\left(\begin{array}{cc}3 & -2 \\ 2 & 5\end{array}\right) x$
(h) $x^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 5 & 3\end{array}\right) x$

10.4 Nonhomogeneous Linear Systems

We now study how to solve nonhomogeneous linear system of DE

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t) \tag{10.55}
\end{equation*}
$$

As in the case of single DE. we separate the homogeneous case $\mathbf{x}^{\prime}=A \mathrm{x}$ and the solution will be given by

$$
\mathbf{x}=\mathbf{x}_{h}+\mathbf{x}_{p}
$$

where \mathbf{x}_{h} is the solution of the homogeneous problem and \mathbf{x}_{p} is a particular solution of the nonhomogeneous problem.

10.4.1 Method of Undetermined Coefficients

This works only when the coefficients of A are constant case, and right hand side terms are constants, polynomials, exponential functions, sines, cosines or finite linear combinations of such functions!
Example 10.4.1. Solve $\mathbf{x}^{\prime}=\left(\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right) \mathbf{x}+\binom{-8}{3}$.

First the charac. eq. of homogeneous equation is

$$
\left|\begin{array}{cc}
-1-r & 2 \\
-1 & 1-r
\end{array}\right|=r^{2}+1=0
$$

And the eigenvectors corresponding to $r=i,-i$ are $(1-i, 1)^{T}$ and $(1+i, 1)^{T}$. Hence

$$
\mathbf{x}_{h}=c_{1}\binom{1-i}{1} e^{i t}+c_{2}\binom{1+i}{1} e^{-i t}
$$

or take real part and imaginary part of

$$
\begin{aligned}
(\cos t+i \sin t)\binom{1-i}{1} & =\binom{(1-i) \cos t+(i+1) \sin t}{\cos t+i \sin t} \\
& =\binom{\cos t+\sin t}{\cos t}+i\binom{-\cos t+\sin t}{\sin t}
\end{aligned}
$$

we get

$$
c_{1}\binom{\cos t+\sin t}{\cos t}+c_{2}\binom{-\cos t+\sin t}{\sin t}
$$

Particular sol. Since $\mathbf{f}(t)$ is constant, we let $\mathbf{x}_{p}=\binom{a_{1}}{b_{1}}$ and find

$$
0=A \mathbf{x}_{p}+\mathbf{f}=\binom{-a_{1}+2 b_{1}-8}{-a_{1}+b_{1}+3}
$$

So $\mathbf{x}_{p}=\binom{14}{11}$.
Example 10.4.2 (nonconstant rhs). Solve $\mathbf{x}^{\prime}=\left(\begin{array}{ll}6 & 1 \\ 4 & 3\end{array}\right) \mathbf{x}+\binom{6 t}{-10 t+4}$.
Eigenvalues are $r_{1}=2, r_{2}=7$ and the eigenvectors are $\mathbf{x}_{1}=\binom{1}{-4}, \quad \mathbf{x}_{2}=$ $\binom{1}{1}$. Hence the complementary solution is

$$
\mathbf{x}_{c}=c_{1}\binom{1}{-4} e^{2 t}+c_{2}\binom{1}{1} e^{7 t}
$$

For a particular solution, let

$$
\mathbf{x}_{p}=\binom{a_{2}}{b_{2}} t+\binom{a_{1}}{b_{1}}
$$

and substitute into the DE and find the numbers $a_{1}, b_{1}, a_{2}, b_{2}$.

$$
\begin{aligned}
\binom{a_{2}}{b_{2}} & =\left(\begin{array}{ll}
6 & 1 \\
4 & 3
\end{array}\right)\left[\binom{a_{2}}{b_{2}} t+\binom{a_{1}}{b_{1}}\right]+\binom{6}{-10} t+\binom{0}{4} \\
\binom{0}{0} & =\binom{\left(6 a_{2}+b_{2}+6\right) t+6 a_{1}+b_{1}-a_{2}}{\left(4 a_{2}+3 b_{2}-10\right) t+4 a_{1}+3 b_{1}-b_{2}+4}
\end{aligned}
$$

Hence

$$
\left(\begin{array}{ccc}
6 a_{2}+b_{2}+6 & = & 0 \\
4 a_{2}+3 b_{2}-10 & = & 0
\end{array}\right) \text { and }\left(\begin{array}{ccc}
6 a_{1}+b_{1}-a_{2} & = & 0 \\
4 a_{1}+3 b_{1}-b_{2}+4 & = & 0
\end{array}\right)
$$

Solving first set of eqs we get $a_{2}=-2, b_{2}=6$. We then substitute it into the second set of eqs to get $a_{1}=-\frac{4}{7}, b_{1}=\frac{10}{7}$. Therefore

$$
\mathbf{x}_{p}=\binom{-2}{6} t+\binom{-\frac{4}{7}}{\frac{10^{7}}{7}}
$$

and the general solution of DE is

$$
\mathbf{x}=c_{1}\binom{1}{-4} e^{2 t}+c_{2}\binom{1}{1} e^{7 t}+\binom{-2}{6} t+\binom{-\frac{4}{7}}{\frac{10}{7}}
$$

Example 10.4.3 (nonconstant rhs 2). Solve

$$
\begin{aligned}
& \frac{d x}{d t}=5 x+3 y-2 e^{-t}+1 \\
& \frac{d y}{d t}=-x+y+e^{-t}-5 t+7
\end{aligned}
$$

The rhs can be written as

$$
\mathbf{F}(t)=\binom{-2}{1} e^{-t}+\binom{0}{-5} t+\binom{1}{7} .
$$

Hence we try

$$
\mathbf{x}_{p}=\binom{a_{1}}{b_{1}} e^{-t}+\binom{a_{2}}{b_{2}} t+\binom{a_{1}}{b_{1}} .
$$

Notice the difference in the candidates. Generally, we had better use the next method.

10.4.2 Variation of Parameters

A Fundamental matrix - Homogeneous system

If $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ are fundamental set of solutions of homog. system $\mathbf{x}^{\prime}=A \mathbf{x}$, then the general solution of homog. system is given by $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}$, or in matrix form

$$
\begin{equation*}
\mathbf{x}=\boldsymbol{\Phi}(t) \mathbf{c} \tag{10.56}
\end{equation*}
$$

where $\mathbf{c}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)^{T}$, and $\boldsymbol{\Phi}(t)$ is the matrix whose columns are vectors $\mathbf{x}_{i}, i=1,2, \cdots, n$:

$$
\boldsymbol{\Phi}(t)=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right)
$$

called a fundamental matrix. We note that

- The fundamental matrix $\boldsymbol{\Phi}(t)$ is nonsingular
- If $\boldsymbol{\Phi}(t)$ is a fundamental matrix of the system $\mathbf{x}^{\prime}=A \mathbf{x}$, then

$$
\begin{equation*}
\Phi^{\prime}(t)=A \boldsymbol{\Phi}(t) \tag{10.57}
\end{equation*}
$$

Variation of Parameters - Nonhomogeneous system

To find a particular solution we may use the technique of section 3.5. i.e., replace the constant coefficient \mathbf{c} by functions

$$
\mathbf{u}(t)=\left(\begin{array}{c}
u_{1}(t) \tag{10.58}\\
u_{2}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right)
$$

so that $\mathbf{x}_{p}=\boldsymbol{\Phi}(t) \mathbf{u}(t)$ is a particular solution of the system

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f} \tag{10.59}
\end{equation*}
$$

Taking derivative we obtain

$$
\begin{equation*}
\mathbf{x}_{p}^{\prime}=\boldsymbol{\Phi}(t) \mathbf{u}^{\prime}(t)+\boldsymbol{\Phi}^{\prime}(t) \mathbf{u}(t) \tag{10.60}
\end{equation*}
$$

Substitute it into (10.59)

$$
\begin{equation*}
\boldsymbol{\Phi}(t) \mathbf{u}^{\prime}(t)+\boldsymbol{\Phi}^{\prime}(t) \mathbf{u}(t)=A \boldsymbol{\Phi}(t) \mathbf{u}(t)+\mathbf{f}(t) \tag{10.61}
\end{equation*}
$$

Since $\boldsymbol{\Phi}^{\prime}(t)=A \boldsymbol{\Phi}(t)$ we have

$$
\begin{gather*}
\mathbf{\Phi}(t) \mathbf{u}^{\prime}(t)=\mathbf{f}(t) \tag{10.62}\\
\mathbf{u}^{\prime}(t)=\boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) \Rightarrow \mathbf{u}(t)=\int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t
\end{gather*}
$$

Since $\mathbf{x}_{p}=\mathbf{\Phi}(t) \mathbf{u}(t)$ we have

$$
\begin{equation*}
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{10.63}
\end{equation*}
$$

Hence the general solution of the system is

$$
\begin{equation*}
\mathbf{x}=\boldsymbol{\Phi}(t) \mathbf{c}+\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{10.64}
\end{equation*}
$$

Example 10.4.4. Solve the DE.

$$
\mathbf{x}=\left(\begin{array}{cc}
-3 & 1 \tag{10.65}\\
2 & -4
\end{array}\right) \mathbf{x}+\binom{3 t}{e^{-t}}
$$

The charac. equation is

$$
\operatorname{det}(A-r I)=\left|\begin{array}{cc}
-3-r & 1 \\
2 & -4-r
\end{array}\right|=(r+2)(r+5)=0
$$

Eigenvectors corresponding to $r=-2, r=-5$ are

$$
\binom{1}{1} \text { and }\binom{1}{-2}
$$

The solution of homog. system is

$$
c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-2} e^{-5 t}
$$

The fundamental matrix is

$$
\mathbf{\Phi}(t)=\left(\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right) \quad \text { and } \boldsymbol{\Phi}(t)^{-1}=\left(\begin{array}{cc}
\frac{2}{3} e^{2 t} & \frac{1}{3} e^{2 t} \\
\frac{1}{3} e^{5 t} & -\frac{1}{3} e^{5 t}
\end{array}\right) .
$$

Hence by (10.63)

$$
\begin{aligned}
\mathbf{x}_{p}(t)=\mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) & =\left(\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right) \int\left(\begin{array}{cc}
\frac{2}{3} e^{2 t} & \frac{1}{3} e^{2 t} \\
\frac{1}{3} e^{5 t} & -\frac{1}{3} e^{5 t}
\end{array}\right)\binom{3 t}{e^{-t}} d t \\
& =\left(\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right) \int\binom{2 t e^{2 t}+\frac{1}{3} e^{t}}{t e^{5 t}-\frac{1}{3} e^{4 t}} d t \\
& =\left(\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right)\binom{t e^{2 t}-\frac{1}{2} e^{2 t}+\frac{1}{3} e^{t}}{\frac{1}{5} t e^{5 t}-\frac{1}{25} e^{5 t}-\frac{1}{12} e^{4 t}} \\
& =\binom{\frac{6}{5} t-\frac{27}{50}+\frac{1}{4} e^{-t}}{\frac{3}{5} t-\frac{21}{50}+\frac{1}{2} e^{-t}}
\end{aligned}
$$

Hence the solution of the nonhomg system is

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-2} e^{-5 t}+\binom{\frac{6}{5} t-\frac{27}{50}+\frac{1}{4} e^{-t}}{\frac{3}{5} t-\frac{21}{50}+\frac{1}{2} e^{-t}}
$$

Initial Value Problems

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \mathbf{c}+\boldsymbol{\Phi}(t) \int_{t_{0}}^{t} \boldsymbol{\Phi}(s)^{-1} \mathbf{f}(s) d s \tag{10.66}
\end{equation*}
$$

If the solution is to satisfy IC $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ then we must have $\mathbf{x}\left(t_{0}\right)=\boldsymbol{\Phi}\left(t_{0}\right) \mathbf{c}$, so

$$
\mathbf{c}=\boldsymbol{\Phi}\left(t_{0}\right)^{-1} \mathbf{x}\left(t_{0}\right)
$$

Hence the solution of IVP is

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}\left(t_{0}\right)^{-1} \mathbf{x}\left(t_{0}\right)+\boldsymbol{\Phi}(t) \int_{t_{0}}^{t} \boldsymbol{\Phi}(s)^{-1} \mathbf{f}(s) d s \tag{10.67}
\end{equation*}
$$

10.4.3 Nonhomogeneous Problem by Diagonalization

We assume A is diagonalizable. In other words, there exists a matrix P such that

$$
P^{-1} A P=D \text { is diagonal }
$$

Substituting $\mathbf{x}=P \mathbf{y}$ into $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, we get

$$
P \mathbf{y}^{\prime}=A P \mathbf{y}+\mathbf{f} \text { or } \mathbf{y}^{\prime}=P^{-1} A P \mathbf{y}+P^{-1} \mathbf{f}=D \mathbf{y}+P^{-1} \mathbf{f}
$$

Example 10.4.5. Solve the DE.

$$
\mathbf{x}=\left(\begin{array}{ll}
4 & 2 \tag{10.68}\\
2 & 1
\end{array}\right) \mathbf{x}+\binom{3 e^{t}}{e^{t}} .
$$

The charac. equation is

$$
\operatorname{det}(A-r I)=\left|\begin{array}{cc}
4-r & 2 \\
2 & 1-r
\end{array}\right|=r(r-5)=0 .
$$

Eigenvectors corresponding to $r=0, r=5$ are

$$
\binom{1}{-2} \text { and }\binom{2}{1} .
$$

Thus $P=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$ and $P^{-1}=\frac{1}{5}\left(\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right)$. Using $\mathbf{x}=P \mathbf{y}$ and

$$
P^{-1} \mathbf{f}=\left(\begin{array}{cc}
\frac{1}{5} & -\frac{2}{5} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right)\binom{3 e^{t}}{e^{t}}=\left(\begin{array}{c}
\frac{1}{5} e^{t} \\
\frac{7}{5}
\end{array} e^{t}\right),
$$

we get the uncoupled system

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & 5
\end{array}\right) \mathbf{y}+\binom{\frac{1}{5} e^{t}}{\frac{7}{5} e^{t}} .
$$

Thus

$$
y_{1}^{\prime}=\frac{1}{5} e^{t} \text { and } y_{2}^{\prime}=5 y_{2}+\frac{7}{5} e^{t} .
$$

Solving for \mathbf{y} we get

$$
y_{1}=\frac{1}{5} e^{t}+c_{1} \text { and }-\frac{7}{20} e^{t}+c_{2} e^{5 t} .
$$

Hence the solution is

$$
\begin{aligned}
\mathbf{x} & =P \mathbf{y}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)\binom{\frac{1}{5} e^{t}+c_{1}}{-\frac{7}{20} e^{t}+c_{2} e^{5 t}} \\
& =\binom{-\frac{1}{2} e^{t}+c_{1}+2 c_{2} e^{5 t}}{-\frac{3}{4} e^{t}-2 c_{1}+c_{2} e^{5 t}} \\
& =c_{1}\binom{1}{-2}+c_{2}\binom{2}{1} e^{5 t}-\binom{\frac{1}{2}}{\frac{3}{4}} e^{t} .
\end{aligned}
$$

10.5 Matrix exponential

To solve a system of linear ODE with constant coefficient ($\mathrm{x}^{\prime}=A \mathrm{x}$), we can use a method similar to scalar DE , i,e., setting $\mathbf{x}=e^{A t}$, where the exponential of a matrix has to be properly understood. We recall

$$
e^{a t}=1+a t+a^{2} \frac{t^{2}}{2!}+\cdots a^{m} \frac{t^{m}}{m!}+\cdots=\sum_{k=0}^{\infty} a^{k} \frac{t^{k}}{k!}
$$

We similarly define, for a matrix A :

$$
\begin{equation*}
e^{A t}=I+A t+A^{2} \frac{t^{2}}{2!}+\cdots+A^{m} \frac{t^{m}}{m!}+\cdots=\sum_{k=0}^{\infty} A^{k} \frac{t^{k}}{k!} . \tag{10.69}
\end{equation*}
$$

Example 10.5.1. Find the $e^{A t}$ when

$$
A=\left(\begin{array}{ll}
2 & 0 \tag{10.70}\\
0 & 3
\end{array}\right)
$$

Sol.

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{cc}
2^{2} & 0 \\
0 & 3^{2}
\end{array}\right), A^{3}=\left(\begin{array}{cc}
2^{3} & 0 \\
0 & 3^{3}
\end{array}\right), A^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right) \\
e^{A t}= & I+A t+A^{2} \frac{t^{2}}{2!}+\cdots+ \\
= & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right) t+\left(\begin{array}{cc}
2^{2} & 0 \\
0 & 3^{2}
\end{array}\right) \frac{t^{2}}{2!}+\left(\begin{array}{cc}
2^{3} & 0 \\
0 & 3^{3}
\end{array}\right) \frac{t^{3}}{3!}+\cdots \\
= & \left(\begin{array}{cc}
1+2 t+2^{2} \frac{t^{2}}{2!}+\cdots & 0 \\
0 & 1+3 t+3^{2} \frac{t^{2}}{2!}+\cdots
\end{array}\right)=\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{3 t}
\end{array}\right)
\end{aligned}
$$

Thus for a $n \times n$ diagonal matrix A with diagonal entries $a_{1}, a_{2}, \cdots, a_{n}$, we see

$$
e^{A t}=\left(\begin{array}{ccccc}
e^{a_{1} t} & 0 & \cdots & 0 & 0 \\
0 & e^{a_{2} t} & 0 & \cdots & 0 \\
& \vdots & & & \vdots \\
0 & 0 & 0 & 0 & e^{a_{n} t}
\end{array}\right)
$$

Derivatives of $e^{A t}$

The derivatives of a matrix function can be computed as

$$
\begin{equation*}
\frac{d}{d t} e^{A t}=A e^{A t} \tag{10.71}
\end{equation*}
$$

Use the series expansion (10.69).

$$
\begin{aligned}
\frac{d}{d t} e^{A t} & =\frac{d}{d t}\left[I+A t+A^{2} \frac{t^{2}}{2!}+\cdots+A^{m} \frac{t^{m}}{m!}+\cdots\right] \\
& =A+A^{2} t+A^{3} \frac{t^{2}}{2!}+\cdots \\
& =A\left[I+A t+A^{2} \frac{t^{2}}{2!}+\cdots\right]=A e^{A t}
\end{aligned}
$$

We can show the general solution of the $\mathrm{DE} \mathbf{x}^{\prime}=A \mathbf{x}$ is $\mathbf{x}=e^{A t} \mathbf{C}$ for some constant vector \mathbf{C} since

$$
\begin{equation*}
\mathbf{x}^{\prime}=\frac{d}{d t} e^{A t} \mathbf{C}=A e^{A t} \mathbf{C}=A \mathbf{x} \tag{10.72}
\end{equation*}
$$

$e^{A t}$ is a fundamental matrix
Let us write $\boldsymbol{\Phi}(t)=e^{A t}$. Then we see $\boldsymbol{\Phi}^{\prime}(t)=A \boldsymbol{\Phi}$ and $\boldsymbol{\Phi}(0)=e^{A 0}=I$ and $\boldsymbol{\Phi}(0) \neq 0$ thus $\boldsymbol{\Phi}(t)$ is a fundamental set of solutions, or a fundamental matrix.

Hence any solution of homog. system $\mathbf{x}^{\prime}=A \mathbf{x}$ is given by $e^{A t} \mathbf{C}$ for some vector \mathbf{C}.

Nonhomog. systems

In view of techniques studied for scalar equations we can see the solution of $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{F}(t)$ is given by

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}=e^{A t} \mathbf{C}+e^{A t} \int_{t_{0}}^{t} e^{-A s} \mathbf{F}(s) d s \tag{10.73}
\end{equation*}
$$

Here $e^{-A s}$ is the matrix inverse of $e^{A s}$ and obtained by replacing s by $-s$.

Laplace transform

Let us recall $\mathbf{X}(t)=e^{A t}$ is the fundamental set of sols. satisfying the IC, i.e.

$$
\begin{equation*}
\mathbf{X}^{\prime}=A \mathbf{X}, \mathbf{X}(0)=I . \tag{10.74}
\end{equation*}
$$

Use Laplace transform. If $\mathbf{x}(s)=\mathcal{L}\{\mathbf{X}(t)\}=\mathcal{L}\left\{e^{A t}\right\}$, then we see

$$
s \mathbf{x}(s)-\mathbf{X}(0)=A \mathbf{x}(s) \text { or }(s I-A) \mathbf{x}(s)=I .
$$

We have used small capital for transformed function and large capital for original function. Multiplying its inverse, we see

$$
\mathbf{x}(s)=(s I-A)^{-1} I=(s I-A)^{-1} .
$$

In other words, $\mathcal{L}\left\{e^{A t}\right\}=(s I-A)^{-1}$ or

$$
\begin{equation*}
e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\} . \tag{10.75}
\end{equation*}
$$

Compare this with the formula:

$$
e^{a t}=\mathcal{L}^{-1}\left\{\frac{1}{(s-a)}\right\} .
$$

This result can be used to find a matrix exponential.

Example 10.5.2. Use Laplace Transform to find $e^{A t}$ when

$$
A=\left(\begin{array}{ll}
1 & -1 \tag{10.76}\\
2 & -2
\end{array}\right)
$$

In general a direction evaluation of $e^{A t}$ is very complicated. However, if we use Laplace Transform of $e^{A t}$ and do some algebraic manipulation on s-space, then use inverse Laplace Transform, we sometimes compute $e^{A t}$ easily.
Sol. First recall $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ and so

$$
\begin{equation*}
\mathcal{L}\left\{e^{A t}\right\}=(s I-A)^{-1} \text { or } e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\} \tag{10.77}
\end{equation*}
$$

We will compute $(s I-A)^{-1}$ first. Since

$$
s I-A=\left(\begin{array}{cc}
s-1 & 1 \\
-2 & s+2
\end{array}\right)
$$

we have

$$
(s I-A)^{-1}=\left(\begin{array}{cc}
s-1 & 1 \\
-2 & s+2
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{s+2}{s(s+1)} & \frac{-1}{s(s+1)} \\
\frac{2}{s(s+1)} & \frac{s-1}{s(s+1)}
\end{array}\right)
$$

Decomposing the entries we see

$$
(s I-A)^{-1}=\left(\begin{array}{ll}
\frac{2}{s}-\frac{1}{s+1} & -\frac{1}{s}+\frac{1}{s+1} \\
\frac{2}{s}-\frac{2}{s+1} & -\frac{1}{s}+\frac{2}{s+1}
\end{array}\right) .
$$

Taking the inverse Laplace Transform, we get by (10.77)

$$
e^{A t}=\left(\begin{array}{cc}
2-e^{-t} & -1+e^{-t} \\
2-2 e^{-t} & -1+2 e^{-t}
\end{array}\right)
$$

